
Chapter 10

Programming with Maple

We have indicated in earlier chapters that Maple is a programming language
and have already seen a simple do loop in applying Newton’s Method in Chapter
4, Exercise 21. In fact, it is possible to use Maple to create highly structured
programs that can perform a large number of useful tasks. Most importantly,
any program written in Maple can call any of the high level commands avail-
able in Maple, or any program that you have previously written in Maple and
included in the same session.

This chapter is intended as a short introduction to the Maple programming
environment. This includes conditional and logical structures

if...then...elif/else...end if, and, or, not, true, false,

looping structures

for/while...do...end do, next, break

and procedural structures

proc...end proc, args, nargs, return, module.

10.1 Conditional and Logical structures

The first class of programming structures are conditional statements which tell
Maple to perform certain commands provided a certain condition is satisfied.

Example 1: Determine if the quadratic polynomial 3x2−2x+4 has 2 distinct
real roots.

Solution: We know that ax2+bx+c has 2 distinct real roots if the discriminant
b2 − 4ac is positive. To compute this, we enter a polynomial:

> p:=3*x^2-2*x+4;

p := 3x2 − 2x + 4

read off the coefficients:

> a,b,c:=coeff(p,x,2), coeff(p,x,1), coeff(p,x,0);

149

150 CHAPTER 10. PROGRAMMING WITH MAPLE

a, b, c := 3, −2, 4

and test the discriminant:
> if b^2-4*a*c > 0
> then "2 real roots"
> else "not 2 real roots"
> end if;

“not 2 real roots”

So the polynomial does not have 2 real roots.

Notice we entered the if...then...else...end if on multiple lines. You
can do this by pressing 〈Shift-Enter〉. If you just press 〈Enter〉, the com-
mands will work but you get a warning message that the input is incomplete.
Putting the then and else clauses on separate lines is good style, but is not
necessary.

In this example, we could have just computed the discriminant:

> b^2-4*a*c;

−44

to see that it is negative. However, if this code is part of a larger computation
and Maple needs to do something else based on the result of this test, then there
might not be a human to decide if the discriminant is positive or negative.

“If” statements may be nested or additional conditions may be included by
adding elif clauses. (This is an abbreviation for “else if.”)

Example 2: Determine if the quadratic polynomial x2 − 4x + 4 has 2 real
roots, 1 real root or 2 complex roots:

Solution: We add an elif clause to our if statement:

> q:=x^2-4*x+4;

q := x2 − 4x + 4

> a,b,c:=coeff(q,x,2), coeff(q,x,1), coeff(q,x,0);

a, b, c := 1, −4, 4
> if b^2-4*a*c > 0
> then "2 real roots"
> elif b^2-4*a*c = 0
> then "1 real root"
> else "2 complex roots"
> end if;

“1 real root”

Repeat this with the polynomials q:=x^2-3*x+4: and q:=x^2-5*x+4: to see
the difference in output.

In general, the syntax for an “if” statement is:

if logical condition

then statements

elif logical condition

then statements

10.1. CONDITIONAL AND LOGICAL STRUCTURES 151

else statements

end if;

Here, the elif...then... and else... clauses are optional and there may
be an arbitrary number of elif...then... clauses. The statements following
then or else can be any valid Maple commands, with each statement ending
in either a colon or semicolon. The logical conditions following if or elif must
evaluate to true or false and may be constructed using, for instance, the math
and set relations:

Relation Math Symbol Maple Symbol

equal = =

not equal 6= <>

less than < <

less than or equal ≤ <=

greater than > >

greater than or equal ≥ >=

subset ⊆ subset

element of ∈ in

as well as the logical and set operators:

Operator Math Symbol Maple Symbol

and ∧ and

or ∨ or

exclusive or xor

not ¬ not

implies ⇒ implies

union ∪ union

intersection ∩ intersection

set minus \ minus

The order of precedence for these operators may be found by typing
?precedence, but to be safe use parentheses if you are unsure. You can also
use an explicit true or false.

Example 3: Given three numbers a, b and c, put them in ascending order
and rename them x, y and z. Use two if statements: the first to put a and b in
order and the second to put c in the correct position. Try it on a = 7, b = −2
and c = 4.

Solution: Use intermediate variables m and n to denote a and b in ascending
order:

> a,b,c:=7,-2,4;

a, b, c := 7, −2, 4
> if a then m,n:=a,b;
> else m,n:=b,a;
> end if;

m, n := −2, 7

152 CHAPTER 10. PROGRAMMING WITH MAPLE

> if c<m
> then x,y,z:=c,m,n;
> elif c<n
> then x,y,z:=m,c,n;
> else x,y,z:=m,n,c;
> end if;

x, y, z := −2, 4, 7

Now try it with other choices of a, b and c.

10.2 Looping Structures

The second class of programming structures is looping structures (do loops)
which tell Maple to perform certain commands repeatedly, with specified changes,
until a certain condition is satisfied. You have already seen some examples of
do loops in Chapter 4, Exercise 21 and Section 8.4.

In general, the syntax for a “do” loop is:

for index from start by step to finish

while logical condition

do

statements

end do;

Here, the statements between do and end do are executed repeatedly, with the
variable index initially having the value start and incrementing each time by
the amount step until either index becomes larger than the value finish or the
logical condition in the while clause becomes false.

The for..., from..., by..., to... and while... clauses are all optional.
If the from... or by... clauses are missing, then the values of start and step

are both taken to have the default value 1. If the to and while clauses are
both missing, then the loop will be repeated forever or until a break command
is executed (as described below).

The logical condition in the while clause must evaluate to true or false and
is constructed exactly like those in an if statement. The statements between
do and end do can be any valid Maple commands, with each statement ending
in either a colon or semicolon.

Example 1: Find the first 4 derivatives of f(x) = sin(x) cos(x) and see if you
can find a pattern.

Solution: Define the function and use a do loop to compute the derivatives:

> f:=sin(x)*cos(x);

f := sin(x) cos(x)
> for n to 4 do
> diff(f,x$n)
> end do;

cos(x)2 − sin(x)2

10.2. LOOPING STRUCTURES 153

−4 sin(x) cos(x)

−4 cos(x)2 + 4 sin(x)2

16 sin(x) cos(x)

Note: We entered multiple lines by pressing 〈Shift-Enter〉. Further, we did
not type a from or by clause; so by default, the index n starts at 1 and steps by
1 on each iteration.

Notice that f (2) = −4f and f (3) = −4f (1). If n is even, so that n = 2k, then
f (2k) = (−4)kf , and if n is odd, so that n = 2k + 1 then f (2k+1) = (−4)kf (1).

Finally, there are two other commands which are used to control the flow in
do loops: next and break. The next command causes Maple to skip the rest
of that iteration and go on to the next iteration. The break command causes
Maple to break out of the loop by skipping the rest of that iteration and all
remaining iterations. Here is an example:

Example 2: Find the first 10 derivatives of f(x) = sin(x) cos(x). Evaluate
each at x = 0. If a given derivative is positive at x = 0, also find its value at
x = π/2. If the second evaluation is also zero, go on to the next derivative. If the
second evaluation is negative, don’t bother to compute any higher derivatives.

Solution:

> for n to 10 do
> derf[n]:=diff(f,x$n);
> derf0[n]:=eval(derf[n],x=0);
> if derf0[n]<0
> then break
> elif derf0[n]=0
> then next
> end if;
> derfp[n]:=eval(derf[n],x=Pi/2)
> end do;

derf 1 := cos(x)2 − sin(x)2

derf0 1 := 1

derfp1 := −1

derf 2 := −4 sin(x) cos(x)

derf0 2 := 0

derf 3 := −4 cos(x)2 + 4 sin(x)2

derf0 3 := −4

Notice the first derivative is positive at x = 0, so Maple also computes the first
derivative at x = π/2. The second derivative at x = 0 is zero, so Maple skips
the second derivative at x = π/2. The third derivative at x = 0 is negative, so
Maple skips the remaining derivatives.

Not all problems involve taking derivatives, and Maple can be applied to
those problems as well. Here is an example.

154 CHAPTER 10. PROGRAMMING WITH MAPLE

Example 3: The Birthday Problem: If n people are chosen at random,
what is the probability that at least two of them have the same birthday?
What is the smallest number of individuals necessary for the probability of a
simultaneous birthday to be at least one half?

Solution: We actually compute the probability that all the people have dif-
ferent birthdays and we gradually increase the number of people. If there are
two people in a room, the likelihood that the second has a birthday different

than the first is
364

365
. If neither of the previous individuals have the same birth-

day, then the likelihood that the third individual has still a different birthday is
364

365
×

363

365
. It is clear how one would compute the probabilities for additional

people, but the process of doing so is boring.

Such a problem is perfect for a Maple loop. We start with probability p = 1.0,
(as a decimal to force all the results to be decimal) then repeatedly multiply by
the respective factors while p is greater than one half. On the first iteration that
the probability drops below the threshold, the loop ends. If the loop ends with a
colon, the intermediate steps are not printed unless one uses a print statement.

> p:=1.0:
> for n from 2 while p>0.5 do
> p:=p*(366-n)/365:
> print(n,p);
> end do:

2, 0.9972602740

3, 0.9917958342

4, 0.9836440877

5, 0.9728644266

6, 0.9595375167

7, 0.9437642973

8, 0.9256647079

9, 0.9053761663

10, 0.8830518225

11, 0.8588586219

12, 0.8329752115

13, 0.8055897252

14, 0.7768974885

15, 0.7470986808

16, 0.7163959953

17, 0.6849923353

18, 0.6530885827

19, 0.6208814745

20, 0.5885616170

10.3. PROCEDURES 155

21, 0.5563116655

22, 0.5243046929

23, 0.4927027663

This says that if there are 23 people in a room, there is only a 49% chance they
all have different birthdays.

10.3 Procedures

Once you have written some code, you may want to reuse it with different input
data. You don’t want to have to retype the code every time with slight changes
to the variable names or values. So you can write your own Maple commands
with variable input (called parameters or arguments). These are called Maple
programs or procedures. For example a procedure to add a first number to 3
times a second number is defined by

> mysum:=proc(a,b)
> a+3*b;
> end proc;

mysum := proc(a, b) a + 3 ∗ b end proc

It is called with a=2 and b=1 by executing

> mysum(2,1);

5

The arguments in the call can be expressions and are totally unrelated to the
names of the parameters used in the definition of the procedure. For example:

> mysum(b,x+y);

b + 3x + 3 y

Notice that parameter a in the definition has been replaced by the argument b
in the call, and b has been replaced by x+y.

As an aside, you may be surprised to realize that you have already been
writing simple Maple procedures in earlier chapters. These are the functions
defined using arrow notation. You may be puzzled because they do not seem to
have the form given above. However, the function defined by

> f:=(x,y)->x+3*y;

f := (x, y)→ x + 3 y

is actually a shorthand for the procedure

> proc(x,y) x+3*y end proc;

proc(x, y)x + 3 ∗ y end proc

which is equivalent to the procedure mysum above. The arrow symbol tells Maple
to create a procedure with parameters x and y and output x + 3y. They both
produce the exact same output, e.g.

> f(2,1), f(b,x+y);

156 CHAPTER 10. PROGRAMMING WITH MAPLE

5, b + 3x + 3 y

More generally, the syntax for a procedure is:

procname:=proc(parameters)
local variables;

global variables;

statements

end proc;

and it is called by executing:

procname(arguments);

Here procname is the name you assign to the procedure. When you call the
procedure, the values of the arguments in the parentheses become the values of
the parameters in the definition; and then the statements are executed in order.
The value returned by the procedure is normally the result of the last statement
in the definition. (However, see the discussion of the return command below.)
This returned value is the only thing printed out by the procedure, unless there
are explicit print statements.

The local and global statements are optional. The variables in the local

statement are only known within the procedure while the variables in the global
statement are known both inside and outside the procedure. If you don’t include
these statements, Maple has complicated default rules for determining if the
variables are local or global, and the result may not be what you intended. So
it is best to include the statements, so that you are sure Maple is doing what you
expect. The remaining statements in the procedure definition can be any valid
Maple commands, with each statement ending in either a colon or semicolon.

Now let’s create some procedures that are slightly more complex than the
simple example given above. The first of these illustrates a use of the for/do

looping structure.

Example 1: In the previous section, we wrote a do loop to compute 4 deriva-
tives of a function. Convert this into a procedure which will work for any
function (written as an expression) and any number of derivatives. Apply the
procedure to find the first 3 derivatives of the function ex sin(x).

Solution: First define the procedure
> derivs:=proc(f,k)
> local n;
> for n to k do
> print(diff(f,x$n))
> end do;
> end proc;

derivs := proc(f, k) localn; forn to k do print(diff(f, x $n)) end doend proc

Notes: : We used a local variable n in the procedure so that executing the
procedure does not change the value of any variable n used outside the proce-
dure. Also, we explicitly typed print, since otherwise Maple would not print
out intermediate results.

10.3. PROCEDURES 157

Now apply this program to the function ex sin(x) and ask for 3 derivatives:

> exp(x)*sin(x); derivs(%,3);

ex sin(x)

ex sin(x) + ex cos(x)

2 ex cos(x)

2 ex cos(x)− 2 ex sin(x)

Note: If the procedure ends with a semicolon, Maple will print the code so
that one can check for errors. Once the procedure is working properly, there
is seldom any reason not to suppress that output, and one can use a colon to
clean up the worksheet as done below.

Example 2: Write a procedure that will plot a function along with its tangent
lines at several points. The inputs to the procedure should be the function, the
two endpoints for the plot interval, and a list of the x-coordinates of the points
of tangency. Use this program to plot 4 sin(x) + cos(2x) along with its tangent
lines at x = −1.75, 2, 4 on the interval [−3, 6].

Solution: The procedure (discussed below) is

> tan_plot:=proc(f,a,b,xs)
> local plist,x,i,xi;
> plist:=f(x);
> for i from 1 to nops(xs) do
> xi:=xs[i];
> plist:=plist,D(f)(xi)*(x-xi)+f(xi);
> end do;
> plot({plist},x=a..b);
> end proc:

and we apply it as follows:

> f:=x-> 4*sin(x)+cos(2*x):

> tan_plot(f,-3,6,[-1.75,2,4]);

–10

0

10

20

–2 2 4 6
x

158 CHAPTER 10. PROGRAMMING WITH MAPLE

We need to discuss the details of the procedure. First, since the procedure refers
to f(x) and D(f), we must define the function using arrow notation, not as an
expression. Second, we used a new command nops (which stands for ”number
of operands”). This command returns the number of entries in a list (or, more
generally,the number of operands in any operation). Consequently, the loop
index i runs from 1 to the number of x’s. The variable xi is defined as the ith x
so we don’t have to recompute it three times. (As a rule of thumb, if a quantity
is recomputed more than twice, give it a name.)

The variable plist stores the functions to be plotted. Initially plist is
just the original function. The loop then appends each of the tangent line
functions, and the plot command encloses it in braces. Further, we defined all
the variables to be local except for the arguments of the procedure.

Finally, note that, although there are several executable statements with
semicolons, we only see the plot output from the last one: a Maple procedure
only returns the value of the last executable statement.

One other feature of Maple procedures is that you do not need to know in
advance of the procedure call the number of arguments that will be included.
This is demonstrated in the next example.

Example 3: Rewrite the procedure from example 2 so that the inputs are
the function, the x-range and y-range for the plot, and the x-coordinates of
the points of tangency. Use it to plot x3 − 3x2 along with its tangent lines at
x = 0, 1, 2, 3 on the interval [−1, 4].

Note: The x-coordinates are not put in a list; so you don’t know in advance
how many arguments there will be. Maple handles this with two new commands:
args and nargs. Within the procedure, nargs is the number of arguments and
args is the list of arguments.

Solution: The procedure (discussed below) is

> tan_plot:=proc(f,xrange,yrange)
> local plist,x,i,xi;
> plist:=f(x);
> for i from 4 to nargs do
> xi:=args[i];
> plist:=plist,D(f)(xi)*(x-xi)+f(xi);
> end do;
> plot({plist},x=xrange,y=yrange);
> end proc:

and we apply it as follows:

> g:=x->x^3-3*x^2;

g := x→ x3 − 3x2

> tan_plot(g,-1..4,-10..10,0,1,2,3);

10.3. PROCEDURES 159

–10

–8

–6

–4

–2
0

2

4

6

8

10

y

–1 1 2 3 4
x

Again we need to discuss the details of the procedure. First, notice that when
there are an indeterminate number of arguments, the first few are named in the
procedure definition and the others remain unnamed. Second, the plot intervals
are now given as ranges; so they must be entered in the form a..b instead
of a,b which would count as two separate arguments. Third, instead of using
nops(xs) we use nargs and instead of using xs[i] we use args[i]. Finally,
the index i starts at 4, beginning after the three named arguments f, xrange
and yrange.

A generalization of this example demonstrates the use of the return com-
mand to exit from the middle of a procedure and return a value which is not
the result of the last statement in the procedure definition.

Example 4: Rewrite the procedure from example 3 to check to see if any of
the x-coordinates yield a vertical asymptote or vertical tangent. (A point x = a
is a vertical asymptote or tangent if lim

x=a
f ′(x) = ±∞.) If there is a vertical

asymptote or tangent, print out an error message and return that value of x.

Use the procedure to plot
x

x− 2
, along with its tangent lines at x = 1, 2 and 3,

on the interval [0, 4]. If there is a vertical asymptote or vertical tangent at one
of the indicated points, drop that x-coordinate from the list and replot.

Solution: The procedure (discussed below) is

> tan_plot:=proc(f,xrange,yrange)
> local plist,x,i,xi;
> plist:=f(x);
> for i from 4 to nargs do
> xi:=args[i];
> if limit(abs(D(f)(x)),x=xi)=infinity
> then print("Error: The following point is a vertical
> asymptote or vertical tangent.");
> return x=xi;
> end if;
> plist:=plist,D(f)(xi)*(x-xi)+f(xi);
> end do;
> plot({plist}, x=xrange, y=yrange, discont=true);
> end proc:

160 CHAPTER 10. PROGRAMMING WITH MAPLE

and we apply it as follows:

> h:=x->x/(x-2);

h := x →
x

x− 2

> tan_plot(h,0..4,-10..10,1,2,3);

“Error: The following point is a vertical asymptote or vertical tangent.”

x = 2

Notice how Maple exits without completing the do loop or the remaining state-
ments in the procedure. It did not print the result of the last statement, i.e., the
plot. Rather it returned the value in the return statement, x = 2. Deleting 2
from the list of points, we get:

> tan_plot(h,0..4,-10..10,1,3);

–10

–8

–6

–4

–2
0

2

4

6

8

10

y

1 2 3 4
x

Here is another situation in which programming constructs are useful. Con-
sider the Folium of Descartes, discussed in Section 4.4. Since y is not isolated
in the equation, we must use implicit differentiation to compute the slope. We
first write y as y(x) to tell Maple that y is a function of x.

> eq:=3*x*y=x^3+y^3:
> eq0:=eval(eq,y=y(x));

eq0 := 3x y(x) = x3 + y(x)3

Then we take the derivative of both sides, and solve for y′.

> diff(eq0,x);
> eq1:=diff(y(x),x)=solve(%,diff(y(x),x));

3 y(x) + 3x (d

dx
y(x)) = 3x2 + 3y(x)2 (d

dx
y(x))

eq1 := d

dx
y(x) =

y(x)− x2

−x + y(x)2

10.3. PROCEDURES 161

Now, suppose that we also want the second derivative or a higher derivative.
To get y′′ we differentiate the first derivative equation:

> eq2:=diff(eq1,x);

eq2 := d
2

dx2 y(x) =
(d

dx
y(x))− 2x

−x + y(x)2
−

(y(x)− x2) (−1 + 2 y(x) (d

dx
y(x)))

(−x + y(x)2)2

However, we notice that the second derivative contains a y′. So we substitute
the value of y′ that we computed above and simplify.

> lhs(eq2)=simplify(subs(eq1,rhs(eq2)));

d
2

dx2 y(x) = −
2 y(x)x (1− 3x y(x) + y(x)3 + x3)

(−x + y(x)2)3

To compute even higher derivatives, it is clear what needs to be done: at each
stage, we differentiate the previous derivative and then replace y′ by its value in
terms of x and y. However, this manual process would quickly become onerous.
Such a situation is exactly where one should consider a loop structure in a Maple
program.

Example 5: Write a Maple procedure which takes an equation in x and y, an
x-range and y-range for a plot and an integer n, plots the equation and returns
the nth derivative of y with respect to x. Use it to find y′′′ for the Folium of
Descartes.

Solution: Before writing the procedure, it is a good idea to first develop and
test the central loop. Here it is for the third derivative. (Notice the use of
embedded comments to help document the code. Anything following a sharp,
#, is a Maple comment and is ignored when the line is executed.)

> # Initialize eqi as the first implicit derivative.
> eqi:=eq1:
> # Compute the 3rd implicit derivative
> for i from 2 to 3 do
> diff(eqi,x):
> eqi:=lhs(%)=simplify(subs(eq1,rhs(%))):
> end do:
> print(eqi);

d3

dx3
y(x) =

2 (1− 3x y(x) + y(x)3 + x3) (−3 y(x)x2 − 4x y(x)3 + x4 + 5x3 y(x)2 + y(x)5)

(x− y(x)2)5

We are now ready to embed this loop in a procedure. Notice the method used
to obtain the first implicit derivative differs from the rest. So an if statement is
used to determine which derivative is requested. When it is the first derivative,
a return command is used to skip the rest of the procedure.

162 CHAPTER 10. PROGRAMMING WITH MAPLE

> implicitder:=proc(eq,xrange,yrange,n::posint)
> # Define local variables so any preexisting values
> # of i,eq0,eq1,eqi are unchanged
> local i,eq0,eq1,eqi;
> print(plots[implicitplot](eq, x=xrange, y=yrange,
> scaling=constrained, color=black));
> # replace y by y(x)
> eq0:=eval(eq,y=y(x));
> # Compute the first implicit derivative
> diff(eq0,x);
> eq1:=diff(y(x),x)=solve(%,diff(y(x),x));
> if n=1 then return simplify(eq1) end if;
> # Initialize eqi as the first implicit derivative
> eqi:=eq1;
> # Compute higher order implicit derivatives
> for i from 2 to n do
> diff(eqi,x):
> eqi:=lhs(%)=simplify(subs(eq1,rhs(%)));
> end do:
> eqi;
> end proc:

Note: One of the parameters is n::posint. This notation means that Maple
should check the argument n to make sure it is a positive integer. If it is not, then
an error message is generated. This powerful technique is called type checking.
See ?type for a list of possible types.

Here is an example of the procedure at work:
> eq:=3*x*y=x^3+y^3;
> implicitder(eq,-2..2,-2..2,3);

eq := 3x y = x3 + y3

–2

–1.5

–1

–0.5

0.5

1

1.5

y

–2 –1.5 –1–0.5 0.5 1 1.5x

d3

dx3
y(x) =

2 (1− 3x y(x) + y(x)3 + x3) (−3 y(x)x2 − 4x y(x)3 + x4 + 5x3 y(x)2 + y(x)5)

(x− y(x)2)5

10.4. ADDITIONAL PROGRAMMING CONSTRUCTS 163

Note: In the preceding procedure, we used the implicitplot command from
the plots package. If we use the with(plots): command, then the whole
package is read in and can affect things outside the procedure. So instead, we use
the full name of the implicitplot command which is plots[implicitplot].

Everyone makes errors in writing computer programs. For help with debug-
ging your Maple procedures, see Section 11.8.

Finally, we point out that once you have created a collection of related
procedures, you can group them in a package by using the module command.
See ?module for more details.

10.4 Additional Programming Constructs

We have given only a brief glimpse of the programming capability of Maple.
We encourage you to explore all of Maple’s programming capability by clicking
on the Help menu. In the Standard Interface, select Maple Help and then
from the Table of Contents select Programming. In the Classic Interface,
select Introduction and then from the first column of the Help Browser select
Programming. In either case, you can the explore the help pages on General

Information, Flow Control, Logic, Data Types, Names and Strings,
Operations, Notation, Expressions, Procedures and Functions, Ran-

dom Objects, and Input and Output.

10.5 Exercises

1. Enter the expressions f =
x3

x2 + sin(x)
and g =

x− sin(x)

x2
. Use an if

statement to determine whether f(3) > g(3), f(3) = g(3) or f(3) < g(3).

2. Write a do loop which will compute cos(1.0), cos(cos(1.0)), . . .,
cos(cos(· · · (cos(1.0)) · · ·)) with 20 applications of cos. What do you think
is the limit as the number of cos’s becomes infinite?
Hints: Before the loop, execute x:=1.0. Then on each iteration execute
x:=cos(%). Plot the curves y = x and y = f(x) on the interval 0..1 and
find the intersection using fsolve. With regard to the intersection point,
what do you observe happening on alternate iterations of the loop? What
method do you think Maple is using to find the intersection?
Notes: The final answer can also be obtained from (cos@@20)(1.0).
Further, the process of finding the limit is known as finding a fixed point
of the function.

3. In Section 10.1, Example 2 tests the sign of the discriminant of a quadratic
polynomial to see if the polynomial has 2 real roots, 1 real root or 2
complex roots. A similar test can be done on cubic polynomials.

For a general cubic polynomial ax3 + bx2 + cx + d, show that the change
of coordinates from x to y where x = y − b

3a
will enable us to write the

164 CHAPTER 10. PROGRAMMING WITH MAPLE

polynomial in a simplified form with no y2 term. Moreover, by dividing
by a, we can make the polynomial have lead coefficient 1, so that it looks
like y3 + py + q.

The discriminant of y3 + py + q is −4p3 − 27q2. If the discriminant is
positive, then there are three distinct real roots. If the discriminant is
negative, there is one real root and two distinct complex roots. And if the
discriminant is zero, then there are repeated roots.

Write a procedure whose argument is a cubic polynomial and which ap-
plies this test to its argument. Your procedure should print the original
polynomial, the simplified polynomial, the value of the discriminant, the
result of the test and the roots of the original cubic equation. Test it on
the polynomials x3 − 6x2 + 11x− 6, x3 − 5x2 + 8x− 4 and x3 − 1.

4. The first 10 Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. In general,

F1 = 1, F2 = 1, Fn = Fn−2 + Fn−1

Write a procedure which returns the nth Fibonacci number.

5. Write a procedure which takes 2 numbers written in a Maple list and
returns a list in either increasing order or decreasing order, depending on
the second argument in the procedure.

6. Write a procedure which computes and simplifies the first n derivatives
of an expression. Apply the procedure to find the first 4 derivatives of
ex + e−x

ex − e−x
.

7. Write a procedure which computes the first n derivatives of a given func-
tion at a given number x = a. However, if one of these derivatives is zero
at x = a, the procedure should quit after that derivative and print out
an error message. Use either functions or expressions. If you use expres-
sions, remember that the result of a subs command is not automatically
simplified. So simplify the value of the derivative. Apply the procedure
to compute the first 6 derivatives of

sin(x)

cot(x) + tan(x)

at x = π/3 unless it is zero there. Then repeat the process with the same
function but at x = π/2.

